

Digging Deeper at Long Wavelengths Joseph Lazio SKA Program Development Office & Jet Propulsion Laboratory, California Institute of Technology

© 2011 California Institute of Technology. Government sponsorship acknowledged.

Digging Deeper at Radio Wavelengths

- Case studies
 - 1. Fundamental physics from pulsar observations and pulsar surveys
 - 2. The Dynamic Radio Sky
 - a) "Fast" Radio Transients
 - b) "Slow" Radio Transients
 - 3. Gravitational Wave Detection and Study ... or special case of #1

Science Pathfinding for the Square Kilometre Array

Scalability could be an issue

Case Study: Fundamental Physics with Radio Pulsars

Arrival times of pulses from radio pulsars can be measured with phenomenal accuracy

- Better than 100 ns precision in best cases
- Enables high precision tests of fundamental physics
 - Theories of gravity, gravitational waves, nuclear equation of state
 - 1993 Nobel Prize in Physics
- Problem: Not all pulsars are equal!
- •Good "timers" < 10% of total population
- Need to find many more!
- ➤ All-sky survey

Processing Considerations I

- 1. For each pixel (α, δ) , observations produce 2-dimensional matrix of power as a function of (v, t):
 - Accumulate data for a time Δt over a bandwidth Δv Suppose Δt = 20 min, Δv = 800 MHz
 - Time sampling δt with frequency channelization δv For GBT GUPPI, δt = 81.92 ms, δv = 24 kHz
 - Data sets ~ 10⁷ × 10⁴ matrices → 60 GB data sets per pixel ...

Processing Considerations II

- 1. For each pixel (α, δ) , observations produce ~ $10^7 \times 10^4$ matrix of power as a function of (v, t):
- 2. Unknown dispersion measure (DM) and period (P)
 - a. For trial DM, compensate for frequency chirp and integrate over frequency (de-disperse)
 10⁴ trial DMs?
 - 10. tilai Divis!

- c. Search for accelerations or frequency drifts
 - "run out of computing capability way before we run out of interesting parameter space"

Processing Considerations III

- 1. For each pixel (α, δ) , observations produce ~ $10^7 \times 10^4$ matrix of power as a function of (v, t):
- 2. Unknown dispersion measure (DM) and period (P)
- 3. Want to access entire field of view or number of pixels
 - Traditional single dish telescope = 1 pixel
 - Parkes Multi-Beam system or Arecibo ALFA ~ 10 pixels
 - Future GBT phased array feed ~ 100 pixels?
 - EVLA or MeerKAT ~ 10³ pixels
 - ASKAP > 10⁴ pixels
 - Arrays introduce another level of complexity or freedom

3000 2000

1000

1450 1400

1350 1300

Case Study: The Dynamic Radio Sky

- Neutron stars
 - Magnetars
 - Giant pulses
 - Short GRBs?
- Microquasars

- GRBs (γ-ray loud; γ-ray quiet?)
 - Afterglows
 - Prompt emission?
- Sub-stellar objects
 - Brown dwarfs
 - Extrasolar planets?
- Scintillation
- UHECRs
- ETI
- Exploding black holes
- ???

Rotating Radio Transients (RRATS)

Pulsating Brown Dwarfs

Radio Transients

Coherent ("Fast")

Generated by particles radiating in phase

$$L \propto N^2$$

Tend to be at lower frequencies

Radiating volume $\propto \lambda^3$

Propagation effects generally important

De-dispersion required

• W < 1 s

Real-time processing probably required

Incoherent ("Slow")

Generated by independent particles

$$L \propto N$$

- Tend to be at higher frequencies
- Propagation effects generally unimportant

De-dispersion not required

• W > 1 s

Coherent ("Fast") Transients

Bursts from neutron stars, evaporating primordial black holes?, prompt emission from γ-ray bursts? ...?

See pulsars

...but periodicity and acceleration aspect of search **not** important

Exploring the Universe with the world's largest radio telescope

Slow ("Incoherent") Transients

- Find all sources in (noisy) image
 ...or in transform plane.
- Measure flux density (brightness).
- Cross-correlate sources with previous epoch and/or other wavelength data.
 - Classify light curves
 - Identify on-going events

Gravitational Wave Studies

- Sea of gravitational waves washing over Earth
- Expected correlation around the sky
- N=20 pulsars with
 σ =100 ns timing noise
 (Hellings & Downs 1983;
 Jenet et al 2005)

Gravitational Wave Detection

- Measure time of arrival (TOA) of pulse at observatory
- Form residuals from expected TOAs
- Residual time series contain both "white" and "red" noise
 - Measurement uncertainties
 - Model uncertainties
 - Intrinsic rotational "jitter" of pulsars
 - **—** ...
- Modest number of time series
 < 100
- Low cadence
 - − ~ 2 data per month
 - Higher cadence "campaigns" might be justifiable

(Kaspi, Taylor, & Ryba 1994)

Exploring the Universe with the world's largest radio telescope

Summary – Digging Deeper at Radio Wavelengths

- Exciting science!
- Leads to exciting processing challenges
 - Pulsar Surveys and "Fast" Transients (real-time, wide-field processing)
 - "Slow" Transients (source finding, time series classification)
 - Gravitational Wave Detection and Study (new algorithms)